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Abstract

Recent applications in flexible electronics require that thin metal films grown on elastomer substrates be deformable.
However, how such laminates deform is poorly understood. While a freestanding metal film subject to tension will rup-
ture at a small strain by undergoing a necking instability, we anticipate that a substrate will retard this instability to an
extent that depends on the relative stiffness and thickness of the film and the substrate. Using a combination of a bifur-
cation analysis and finite element simulations, we identify three modes of tensile deformation. On a compliant elasto-
mer, a metal film forms a neck and ruptures at a small strain close to that of a freestanding film. On a stiff elastomer, the
metal film deforms uniformly to large strains. On an elastomer of intermediate compliance, the metal film forms multi-

ple necks, deforms much beyond the initial bifurcation, and ruptures at a large strain. Our theoretical predictions call
for new experiments.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Flexible electronics are being developed for diverse applications, such as paper-like displays that can be
folded or rolled (Forrest, 2004), electronic skins for humans and robots (Wagner et al., 2005), and sensors
to monitor soft tissues (Gray et al., 2004). In some designs, small islands of stiff materials and thin metal
interconnects are deposited on a polymer substrate. When the structure is stretched, the islands strain neg-
ligibly, but the metal interconnects deform with the substrate. Mechanical failure, such as rupture and de-
bond of metal interconnects, poses a significant challenge.
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A metal film, patterned in a zig-zag shape and embedded in a polymer substrate, acts like a spring, and
can sustain a large elongation of the substrate (Gray et al., 2004). Nonetheless, such a structure still fails by
rupture of the metal at sites of strain concentration. In this paper, to study the basic behavior of rupture, we
focus on a blanket film on a polymer substrate. Experiments have shown that a freestanding thin metal film
usually ruptures at a small strain (�1%; Pashley, 1960; Baral et al., 1984; Keller et al., 1996; Huang and
Spaepen, 2000; Xiang et al., 2002; Espinosa et al., 2003; Lee et al., 2003). By contrast, thin metal films
on polymer substrates rupture at strains of a large disparity, ranging from less than one percent to a
few tens of percent (Chiu et al., 1994; Kang, 1996; Macionczyk and Bruckner, 1999; Kraft et al., 2000;
Hommel and Kraft, 2001; Gage and Phanitsiri, 2001; Alaca et al., 2002; Yu and Spaepen, 2003; Lacour
et al., 2003; Gruber et al., 2003; Xiang et al., 2005).

An essential difference between a freestanding and a substrate-bonded metal film is appreciated as fol-
lows (Fig. 1). The low ductility of a freestanding metal film results from local thinning. For a sufficiently
thin metal film, dislocations readily escape from the surfaces of the film. Subsequently, the metal film does
not harden appreciably. Even for a metal film passivated by a native oxide or other hard coatings, a modest
strain will break the coatings and allow dislocations to escape. Without hardening, the tensile deformation
of a freestanding metal film is unstable: a perturbation in its thickness promotes the film to thin down lo-
cally, and a single neck causes the film to rupture. By volume conservation, upon rupture, the local thinning
causes a local elongation on the order of the film thickness. Given the small thickness-to-length ratio of the
film, this local elongation contributes little to the overall rupture strain.

The local elongation requires space to accommodate. This space is available to the freestanding film as
the ruptured halves move apart, but is unavailable to the film bonded to a substrate subject to a modest
tensile strain. Consequently, the polymer substrate may delocalize the strain field in the metal film, carrying
the film far beyond the rupture strain of a freestanding film. The large rupture strains of metal films bonded
to polyimide substrates have been demonstrated in experiments (Kang, 1996; Macionczyk and Bruckner,
1999; Gruber et al., 2003; Xiang et al., 2005), and in our finite element simulations (Li et al., 2005). Our
simulations have also shown that, once debonded from the substrate, the metal film behaves just like a free-
standing film, rupturing at a small strain. We believe that the observed disparity in the rupture strains of the
metal films on polymer substrates is caused, at least in part, by the disparity in the quality of bonding.

Our previous paper (Li et al., 2005) has focused on metal films on a relatively stiff polymer (polyimide).
Applications such as electronic skins require much more compliant substrate material, such as silicone. A
question remains whether such an elastomer substrate can still carry a metal film to large strains. A
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Fig. 1. When a metal film ruptures, local thinning leads to a local elongation. (a) A freestanding metal film accommodates the local
elongation as the ruptured halves move apart and (b) a substrate-bonded film cannot accommodate the local elongation, so that the
strain field in the metal film is delocalized, allowing the film to deform to large strains.
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preliminary study shows that an elastomer substrate may do so by stabilizing multiple necks in the metal
film (Li et al., 2004).

The present paper reports an extended study of the deformability of metal/elastomer laminates. When
the applied strain is small, the laminates deform uniformly (Section 2). At some critical strains, subject
to a perturbation of small amplitude, the uniform deformation bifurcates into nonuniform deformation
(Section 3). Using finite element simulations, we study large-amplitude nonuniform deformation of the lam-
inates (Section 4). Provided the substrates are not too compliant, we find that the metal films can deform
substantially after the initial bifurcation, and rupture at strains much larger than the critical strains at
which bifurcation sets in.
2. Stability of uniform deformation against perturbations of long wavelengths

As a freestanding metal loaded in tension elongates in one direction and thins in the transverse direction,
the tensile force increases due to the hardening of the metal, but decreases due to the reduction in the cross-
sectional area. The tensile force peaks at some strain, at which a neck sets in. The uniform deformation in
the metal becomes unstable when the geometric softening prevails over material hardening. This model is
attributed to Considère in textbooks. By contrast, the same model shows that the uniform deformation in a
freestanding elastomer is stable for all strains, because the elastomer stiffens so steeply that the tensile force
always increases with deformation. What will happen to a metal/elastomer laminate?

Fig. 1 illustrates the model. A blanket metal film, initial thickness h, is bonded to an elastomer substrate,
initial thickness H. The metal film is modeled by the J2 deformation theory; under uniaxial tension, the
metal deforms according to the power law r = KeN, where r is the true stress, e the strain, K the pre-factor,
and N the hardening exponent. The elastic strain in the metal is neglected. This paper uses the natural strain
as the strain measure, defined by the logarithm of the deformed length divided by the undeformed length.
The elastomer is modeled as a Neo-Hookean solid (Treloar, 1948); under uniaxial tension, the elastomer
deforms according to r = (E/3)(exp(2e) � exp(�e)), where E is Young�s Modulus. We assume that the lam-
inate deforms under the plane strain conditions in the plane (x1,x2), subject to the applied strain e in the x1
direction.

We first study the uniform deformation of the laminate. Under the plane strain conditions, the stress in
the x1 direction relates to the applied strain as
rfilm ¼ Kð2=
ffiffiffi
3

p
ÞNþ1eN ð1Þ
in the film, and as
rsub ¼ ð2E=3Þ sinhð2eÞ ð2Þ
in the substrate. By volume conservation, as the laminate elongates in the x1 direction, both the film and the
substrate thin by a factor of exp(�e) in the x2 direction. Consequently, the resultant force in the x1 direction
is F = (rfilmh + rsubH)exp(�e), or
F
Kh

¼ 2ffiffiffi
3

p
� �Nþ1

eN þ 2

3
sinhð2eÞEH

Kh

" #
expð�eÞ. ð3Þ
Note that a single dimensionless parameter, EH/Kh, emerges here to quantify the effect of the substrate.
Fig. 2 plots the resultant force as a function of the applied strain e. When EH/Kh = 0, the metal film is in

effect freestanding; the resultant force first rises, peaks at a small strain, and then drops. When EH/Kh > 0,
the resultant force scales as F � exp(e) for large strains; consequently, even if the force peaks at a modest
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Fig. 2. When the laminate deforms uniformly, the force–strain relation exhibits three kinds of behaviors, depending on the parameters
EH/Kh and N.
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strain and then drops, the force will reach a minimum and increase again at larger strains. When EH/Kh is
very large, the force increases monotonically for all strains.

Eqs. (1) and (2) describe a state of uniform deformation in the laminate. We now begin to study the sta-
bility of the uniform deformation against a perturbation of small amplitude. A Fourier component of the
perturbation is sinusoidal in x1, and has a wave number k (i.e., a wavelength 2p/k). When the wavelength of
the perturbation is much larger than the total thickness of the laminate, the laminate can be viewed as a
series of segments along its length, each segment being in a state of uniform deformation. By force balance,
all the segments carry the same resultant force. If the force–strain curve is not monotonic, the same force
may correspond to two or three strains (Fig. 2). Such a force–strain curve allows the laminate to deform in
a nonuniform state.

Setting dF/de = 0, we obtain from Eq. (3) that
EH
Kh

¼ 3
2ffiffiffi
3

p
� �Nþ1 eN�1ðe� NÞ

expð2eÞ þ 3 expð�2eÞ . ð4Þ
When EH/Kh = 0, Eq. (4) recovers the well-known result that, for a freestanding metal, at the strain e = N,
the uniform deformation bifurcates into nonuniform deformation of a wavelength much larger than the
film thickness. For a laminate, Eq. (4) divides the plane (e,EH/Kh) into two regions (Fig. 3). Above the
curve, the force increases as the strain increases, dF/de > 0; below, dF/de < 0. The left part of the curve
in Fig. 3 corresponds to the force maxima in Fig. 2; and the right part, the force minima. When the laminate
is subject to a perturbation of a wavelength much larger than the total thickness of the laminate, uniform
deformation is stable for all strains if EH/Kh > 0.92, and for strains up to the left part of the curve if
EH/Kh < 0.92.

In the above, we have only considered perturbations of long wavelengths. In reality, a perturbation has
Fourier components of all wavelengths. For each component, there is a critical strain at which the uniform
deformation becomes unstable. The uniform deformation is stable against perturbation of all wavelengths
if the applied strain is below the lowest critical strain. For a freestanding film, the lowest critical strain oc-
curs at long wavelengths (Hill and Hutchinson, 1975). Consequently, it is a common practice to identify the
long wave limit, e = N, as the rupture strain of a freestanding metal. However, for a metal film on a thick
elastomer (i.e., a large value of EH/Kh), the long wave limit of the critical strain given by Eq. (4) tends to
infinity, so that the lowest critical strain occurs at a finite wavelength. We next study the stability of uniform
deformation in the laminate against perturbations of all wavelengths.
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Fig. 3. For a given value of the hardening exponent (N = 0.02 used in this plot), the plane of e and EH/Kh is divided into two regions:
above the curve, dF/de > 0; below, dF/de < 0. Uniform deformation in the laminate is stable against perturbation of long wavelengths
for all strains if EH/Kh > 0.92, and for strains up to the left part of the curve if EH/Kh < 0.92.
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3. Stability of uniform deformation against perturbations of all wavelengths

We perform the bifurcation analysis using an established procedure (e.g., Hill and Hutchinson, 1975;
Stören and Rice, 1975; Dorris and Nemat-Nasser, 1980; Rivlin, 1982; Steif, 1986; Bigoni et al., 1997; She-
noy and Freund, 1999). This procedure is summarized here for the laminate. Take the current state of uni-
form deformation, defined by Eqs. (1) and (2), as the reference state. Represent a nonuniform perturbation
by a small increment in the displacement field vi(x1,x2), and a small increment in the nominal stress field
_T ijðx1; x2Þ. The increments are in equilibrium and incompressible:
_T ij;i ¼ 0; vi;i ¼ 0. ð5Þ

For either the metal film or the elastomer substrate, the constitutive law takes the form (Hill and Hutch-

inson, 1975):
_T 11 ¼ ðl� � rÞv1;1 � l�v2;2 þ _p;
_T 22 ¼ l�ðv2;2 � v1;1Þ þ _p;

_T 12 ¼ lþ r
2

� �
v2;1 þ l� r

2

� �
v1;2;

_T 21 ¼ l� r
2

� �
ðv2;1 þ v1;2Þ;

ð6Þ
where _p is the increment in the mean stress. For the metal film, r is given by Eq. (1), l = (K/2)eNcoth(2e)
and l* = (KN/4)eN�1. For the elastomer substrate, r is given by Eq. (2), and l = l* = (E/3) cosh(2e).

A Fourier component of the perturbation takes the form
v1 ¼ a1eikx1þsx2 ; v2 ¼ a2eikx1þsx2 ; _p ¼ ceikx1þsx2 ; ð7Þ

where k is the wave number, i ¼

ffiffiffiffiffiffiffi
�1

p
, and a1, a2, c and s are constants. A substitution of (6) and (7) into (5)

leads to
ðl� r=2Þs2 � ðl� � rÞk2 iskðl� l� � r=2Þ ik

iskðl� l� � r=2Þ l�s
2 � ðlþ r=2Þk2 s

ik s 0

264
375 a1

a2
c

264
375 ¼ 0. ð8Þ
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This is a set of linear algebraic equations for a1, a2 and c. To have nontrivial solutions, the determinant of
(8) must vanish, which gives four roots:
Fig. 4
pertur
s1;2 ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l� 4l� þ K

�2lþ r

s
; s3;4 ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l� 4l� � K

�2lþ r

s
ð9Þ
with K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 16l�ðl� l�Þ

p
. In general, the roots in (9) are complex-valued, as discussed by Hill and

Hutchinson (1975). Assuming all roots are distinct, a general representation of the perturbation is
v1 ¼ eikx1ðb1es1x2 þ b2e�s1x2 þ b3es3x2 þ b4e�s3x2Þ;

v2 ¼ ieikx1
s1
k
ðb1es1x2 � b2e�s1x2Þ þ s3

k
ðb3es3x2 � b4e�s3x2Þ

h i
;

_p ¼ eikx1
s1ðK� rÞ

2
ðb1es1x2 � b2e�s1x2Þ � s3ðKþ rÞ

2
ðb3es3x2 � b4e�s3x2Þ

� �
;

ð10Þ
where b1, b2, b3, b4 are constants. Eq. (10) is applicable to both the film and the substrate, but with different
sets of constants, denoted as sþi ; bþi for the film, and s�i ; b�i for the substrate.

There are eight boundary conditions for the laminate: two tractions vanish at the top surface of the film,
two tractions vanish at the bottom surface of the substrate, and two tractions and two displacements are
continuous at the interface. These boundary conditions lead to a set of homogeneous algebraic equations
for bþ1 ; bþ2 ; bþ3 ; bþ4 ; b�1 ; b�2 ; b�3 ; b�4 , with the coefficient matrix L given in Appendix A. To have nontrivial
solutions, the determinant of the matrix must vanish, det(L) = 0. This equation determines the critical
strain for a given wave number.

We now describe the critical strains calculated from the above procedure. First consider a freestanding
metal film. In the long wave limit, kh! 0, the Considère model gives the critical strain e = N. In the short
wave limit, kh ! 1, the nonuniform deformation develops near the surfaces of the layer, and decays expo-
nentially in the thickness direction of the film; the bifurcation analysis gives critical strain e �

ffiffiffiffiffiffiffiffiffi
N=2

p
for

small N. Fig. 4 includes a plot of the critical strain as a function of kh for the freestanding metal film.
For N = 0.02, the curve approaches the long wave limit e = 0.02 and the short wave limit e = 0.105.

Next consider the metal/elastomer laminate, which is characterized by three dimensionless parameters:
E/K, H/h and N. In numerical examples, we will model the metal as a weakly hardening material, N = 0.02
and K = 114 MPa. We will vary Young�s modulus of the elastomer, E = 20, 120, 200 MPa (corresponding
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. The critical strains at which uniform deformation becomes unstable are plotted as a function of the wave number of the
bation, for substrates of various elastic moduli (a), and of various thicknesses (b).
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to E/K = 0.18, 1.05, 1.75, respectively). We will also vary the thickness ratio, H/h = 0 (freestanding metal
film), 1, 5, 50. Fig. 4 compares the critical strain of the laminate to that of the freestanding metal film. In the
short wave limit, kh ! 1, the perturbation does not sense the existence of the substrate, and the critical
strain corresponds to the short wave limit of the freestanding metal film. In the long wave limit, kh! 0,
the critical strain is given by Eq. (4), being infinite for the parameters chosen in Fig. 4. The critical strain
drops precipitously as the wavelength of the perturbation decreases. The presence of the elastomer sub-
strate elevates the critical strain: the stiffer the substrate, the higher the critical strain (Fig. 4a). Similarly,
the thicker the substrate, the higher the critical strain (Fig. 4b).

The previous two sections study small perturbations from uniform deformation. The following consid-
erations motivate the need to study nonuniform deformation of large amplitudes.

For a metal film on a stiff substrate, the lowest critical strain occurs at a small wavelength. Recall that the
short wave limit of the laminate is the same as that of the freestanding metal film, e �

ffiffiffiffiffiffiffiffiffi
N=2

p
. Do these

results mean that, a nonhardening metal film on a stiff substrate will rupture at very small strains? The
answer is no. For the film to rupture at a small wavelength, to accommodate elongations associated with
closely spaced necks, a large strain must be applied to the substrate.

For a metal film on a compliant substrate, the lowest critical strain occurs at a wavelength several times
the film thickness, and is not much above the long wave limit of a freestanding film, e = N. Upon further
straining, will such nonuniform deformation amplify to grow multiple necks, or will deformation localize to
grow a single neck? The former would lead to a large rupture strain, and the latter a small rupture strain.
We expect that the outcome depends on how compliant the substrate is.
4. Large-amplitude nonuniform deformation

The questions raised in the last two paragraphs suggest that, for a metal/elastomer laminate, the critical
strain at which bifurcation sets in can be very different from the strain at which the film ruptures. To answer
the above questions quantitatively, we must analyze large-amplitude nonuniform deformation in the lam-
inate. We do so by using the finite element code ABAQUS.

To initiate nonuniform deformation in the finite element simulations, we place a V-shaped notch, 0.2 h
wide and 0.05 h deep, at the center of the film surface. Three-node triangular elements are used in the film,
four-node quadrilateral elements in the substrate, and matching elements along the interface. The size of
the element along the interface is 0.1 h and a comparable element size is used in the whole film, except
for the region near the notch, where the meshes are dense. Coarser elements are used in the part of substrate
far away from the interface.

Simulation results are shown for films on substrates of various elastic moduli and thicknesses, Fig. 5
(H/h = 50), Fig. 6 (H/h = 5), and Fig. 7 (H/h = 1). Depending on the elastic modulus of the substrate, three
modes of deformation can be identified. As the first mode of deformation, when the substrate is very com-
pliant (e.g., E/K = 0.18), the film forms a single neck near the preexisting notch, and the substrate locally
distorts to follow the neck in the film. The notch starts thinning at a strain of about 0.02, and the film rup-
tures at a strain comparable to that of a freestanding film. As expected, the very compliant substrate does
not delocalize the strain field in the metal film.

As the second mode of deformation, when the substrate is of intermediate stiffness (e.g., E/K = 1.05), the
film forms multiple necks, stretches to a much higher strain, and then ruptures near the preexisting notch.
The spacing between the necks is comparable to the wavelength corresponding to the lowest critical strain,
but the rupture strain is much larger than the critical strain for the nonuniform deformation to set in. For
example, the bifurcation analysis predicts that the lowest critical strain occurs at kh = 1.36, 1.35 and 1.08
for, respectively,H/h = 50, 5 and 1, while the corresponding finite element simulations show that kh = 1.65,
1.60 and 0.97. The fair agreement indicates that the perturbation at the wavelength corresponding to the



Fig. 5. Finite element simulations identify three modes of tensile deformation, depending on the stiffness of the substrate. The
substrates are thick (H/h = 50). The right half of the laminate and only part of the substrate are shown. Contours represent the Mises
stress level. Note the much larger strains of the last two modes.

Fig. 6. Three modes of tensile deformation of the metal films on thin substrates (H/h = 5). Note the much larger strains of the last two
modes.
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lowest critical strain prevails over those of other wavelengths, and sets the spacing of the multiple necks.
Further deformation involves the elongation of the film and the distortion of the substrate near all necks.
Each neck contributes an extra elongation. As a whole, the metal film can stretch to a large strain before
final rupture. Further simulations show that this significant increase in the rupture strain of the metal film is
insensitive to the size of the preexisting notch. Multiple necks stabilize on substrates of a range of stiffness
(E = 80–160 MPa). The stiffer the substrate, the smaller the spacing between the necks, and the larger the
rupture strain.

As the third mode of deformation, when the substrate is stiff (e.g., E/K = 1.75), the metal film can de-
form uniformly to large strains. The lowest critical strain occurs at small wavelengths, close to the short
wave limit for a freestanding metal film. Further growth of such short wave perturbations to rupture in-
volves huge local strain. The metal film deforms nearly uniformly to a large strain without rupture, even



Fig. 7. Three modes of tensile deformation of the metal films on very thin substrates (H/h = 1). The last two modes still lead to much
larger strain.

Fig. 8. A sequence of deformed states of a laminate with E/K = 1.05 and H/h = 50. Note the formation of multiple necks in the film.
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at the preexisting notch. This behavior is similar to that of a metal film on a polyimide substrate (Li et al.,
2005).

Fig. 8 shows a sequence of snapshots of deformation leading to multiple necks (H/h = 50, E/K = 1.05).
At small strains, the film deforms uniformly; the preexisting notch does not cause any significant nonuni-
formity in the deformation. At large strains, nonuniform deformation becomes pronounced, and develops
into multiple necks. The film eventually ruptures near the notch.

To see how a very thin elastomer substrate stabilizes multiple necks in a metal film, Fig. 9 plots the resul-
tant forces in the film, Ffilm, and in the substrate, Fsub, extracted from the finite element simulations, for
cases of H/h = 1 and various elastic moduli. For the laminate with E/K = 0.18, the total force keeps
decreasing as the applied strain increases. The total force drops abruptly when the neck sets in. For the
laminate with E/K = 1.05, the abrupt drop in Ffilm due to film necking is compensated by an abrupt increase
in Fsub. The total force keeps nearly constant. The Neo-Hookean material stiffens substantially at large
strain. As a result, the elastomer becomes so stiff near each neck that it impedes the necking development.
The necking of metal film on a sufficiently stiff elastomer is stable. For the laminate with E/K = 1.75, the
total force keeps increasing as applied strain increases, indicating stable stretching of the laminate without
forming necks.



Fig. 9. Resultant forces in x1 direction in the laminates (H/h = 1) as a function of the applied tensile strain. E/K = 0.18 in (a), 1.05 in
(b), 1.75 in (c). All data points are extracted from the finite element simulations.
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5. Discussions

Multiple necks have been observed in several situations. For example, when a metal ring is expanded at a
high strain rate using electromagnetic loading, after a period of nearly uniform deformation, the ring forms
multiple necks (Niordson, 1965). Inertia suppresses the rates of growth of both very long and very short
wavelength modes of nonuniform deformation, promoting multiple necks at an intermediate wavelength
(Shenoy and Freund, 1999). As another phenomenon, multiple shear bands have been observed in metallic
glass layers sandwiched between two ductile metal layers (Alpas and Embury, 1988). When a shear band
forms in the metallic glass, the ductile metal layers arrest the shear band, so that the stress in the metallic
glass away from the shear band is kept high, allowing new shear bands to form. While the role of inertia or
the ductile metal layers is analogous to that of the elastomer substrate, we are unaware of any experimental
observation of multiple necks in thin metal films on elastomer substrates. Our theoretical prediction there-
fore calls for new experiments.

In the present model, we assume perfect bonding between the metal film and the elastomer substrate. In
practice, the metal/elastomer interface is never perfect. When such a structure is stretched, debond may oc-
cur, so that the metal film becomes freestanding and ruptures at a small strain. The debond on the interface
and the necking in the film may develop simultaneously, facilitating each other. In this sense, the present
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model may overestimate the rupture strain of the metal films. We will report simulations of the co-evolution
of debond and necking elsewhere.

We assume that the laminate deforms under the plane strain conditions; for example, the preexisting
notch in the simulations corresponds to an infinitely long trench in the film surface. In a real metal film,
an imperfection such as a missing grain may initiate nonuniform deformation, which then propagates
across the film, leaving a long neck in its wake. Rupture by this process requires higher applied strain than
that of the rupture originated by a long trench in the film. In this sense, the present model underestimates
the rupture strain. (Begley and Bart-Smith (2005) have studied the formation of periodic cracks in thin
metal films on elastomer substrates, but they have assumed that the metal films are elastic.) Another effect
is not captured by the plane strain conditions. Under a tensile force, a laminate elongates in one direction
and contracts in two other directions. The difference in Poisson�s ratios in the metal and the elastomer
causes in the metal film a compressive stress transverse to the applied force, causing the metal film to wrin-
kle. These effects will be studied elsewhere.

Our simulations assume that the metal films obey the J2 deformation theory. In reality, the metal film
is polycrystalline, with the grain size comparable to the film thickness. We have also assumed that the
elastomer substrates allow dislocations to escape from the metal films, so that the metal films harden
weakly at large strains. To what extent these assumptions reflect the reality is uncertain. Nonetheless,
the constraint of the substrate on the film is largely geometrical, so that the prediction of enhanced rup-
ture strain should stand, provided the metal film is plastically deformable and remains adherent to the
substrate.
6. Summary

Under tension, the state of uniform deformation is unstable in a freestanding metal layer when the
strain exceeds a critical value. By contrast, the state of uniform deformation is stable in a freestanding
elastomer layer for all strains. This paper studies the behavior of a laminate of a metal film bonded on
an elastomer substrate. We calculate the resultant force in the laminate under uniform deformation.
When the resultant force as a function of the strain peaks, the uniform deformation gives in to a per-
turbation of a wavelength much larger than the total thickness of the laminate. This simple model tends
to overestimate the effect of the substrate in stabilizing the uniform deformation, as the critical strain
drops precipitously as the wavelength of the perturbation decreases. Using a bifurcation analysis, we
study the stability of the uniform deformation of the laminate against perturbations of all wavelengths.
When the substrate is stiff, the lowest critical strain approaches the short wave limit of the freestanding
metal film. When the substrate is compliant, the lowest critical strain occurs at wavelengths about a few
times the thickness of the film, and is not much above the long wave limit of the freestanding metal
film. Simulations of large-amplitude nonuniform deformation show that, provided the substrate is
not too compliant, the metal film can sustain strains much beyond the critical strain predicted by
the bifurcation analysis. Such large rupture strains result from the formation of multiple necks in the
film.
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Appendix A

The components of the matrix L are
L11 ¼ Aþsþ1 expðsþ1 ĥÞ; L12 ¼ �Aþsþ1 expð�sþ1 ĥÞ;
L13 ¼ Bþsþ3 expðsþ3 ĥÞ; L14 ¼ �Bþsþ3 expð�sþ3 ĥÞ;
L15 ¼ L16 ¼ L17 ¼ L18 ¼ 0;

L21 ¼ Cþ expðsþ1 ĥÞ; L22 ¼ Cþ expð�sþ1 ĥÞ;
L23 ¼ Dþ expðsþ3 ĥÞ; L24 ¼ Dþ expð�sþ3 ĥÞ;
L25 ¼ L26 ¼ L27 ¼ L28 ¼ 0;

L31 ¼ Aþsþ1 ; L32 ¼ �Aþsþ1 ; L33 ¼ Bþsþ3 ; L34 ¼ �Bþsþ3 ;

L35 ¼ �A�s�1 ; L36 ¼ A�s�1 ; L37 ¼ �B�s�3 ; L38 ¼ B�s�3 ;

L41 ¼ L42 ¼ Cþ; L43 ¼ L44 ¼ Dþ;

L45 ¼ L46 ¼ �C�; L47 ¼ L48 ¼ �D�;

L51 ¼ �L52 ¼ sþ1 ; L53 ¼ �L54 ¼ sþ3 ;

L56 ¼ �L55 ¼ s�1 ; L58 ¼ �L57 ¼ s�3 ;

L61 ¼ L62 ¼ L63 ¼ L64 ¼ 1; L65 ¼ L66 ¼ L67 ¼ L68 ¼ �1;

L71 ¼ L72 ¼ L73 ¼ L74 ¼ 0;

L75 ¼ A�s�1 expð�s�1 bH Þ; L76 ¼ �A�s�1 expðs�1 bH Þ;
L77 ¼ B�s�3 expð�s�3 bH Þ; L78 ¼ �B�s�3 expðs�3 bH Þ;
L81 ¼ L82 ¼ L83 ¼ L84 ¼ 0;

L85 ¼ C� expð�s�1 bH Þ; L86 ¼ C� expðs�1 bH Þ;
L87 ¼ D� expð�s�3 bH Þ; L88 ¼ D� expðs�3 bH Þ;
where
A� ¼ 2l�
� þ ðK� � r�Þ=2;

B� ¼ 2l�
� � ðK� þ r�Þ=2;

C� ¼ ðl� � r�=2Þðk þ ðs�1 Þ
2
=kÞ;

D� ¼ ðl� � r�=2Þðk þ ðs�3 Þ
2
=kÞ;

ĥ ¼ h expð�eÞ; bH ¼ H expð�eÞ.
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